Last week at the Culture Change & Behavior lab

Last week our lab held the last meeting for the semester. And to celebrate a great productive year we had… chocolate-covered insects. It’s a bizarre tradition carried over from ~1 ago when the lab studied disgust towards eating different animals ūüôā

I will miss working with our fantastic undergraduate apprentices! This semester we focused on 2 projects: 1)using process tracing software to examine how much different types of information matter for making food healthiness judgments, and 2) measuring household wealth (& how it affects health) across the world.

The first project was my “baby”: after mostly survey and interview work over the past several semesters, I really wanted to try learning a new method. I both hated and loved it: the learning curve can be brutal, but once we got some preliminary results things felt worth it!
We used a process tracing software that allows you to analyze the decision making process of participants. We used this program to have people rate different foods on healthiness after checking some information about them. We gave them two types of information- positive (e.g. presence of vitamins) and negative (e.g. presence of artificial ingredients). Our pilot confirmed the hypothesis that people do in fact spend more time checking out negative information! (See chart: time/Y axis is in milliseconds)
Screen Shot 2017-04-27 at 5.15.48 PM.png

For the other project I spent the last 7 MONTHS harmonizing and cataloguing the many assets and services used to assess household wealth in low-income countries. The main question for this project is to examine how economic inequalities shape global health outcomes (e.g. obesity in adults and child growth) and to test whether different pathways to wealth might shape these things differently. I’m happy to announce that we in fact DID finish all the data harmonization and merging (it was no spring picnic) and the lab will now begin analyzing the data and examining different dimensions of wealth.

Uhh I will miss this amazing team for sure.. but hey- in about a week I graduate! What a strange feeling it is!

Cognition paper published!

Ta-da! Finally. Mine and Dr. Hruschka’s paper is finally out in the Journal of Cognition and Culture. This survey work was done over 2 years in both Eastern Europe and Southwestern U.S. So glad to see it in print!

HERE is the PDF: CognitiveDifferences_Paper2017. Also, if you don’t feel like reading it, i just recorded a 5-minute overview of the paper (recorded between meetings.. after 2 cups of coffee.. sorry if I talk quickly!).

Cooking: Digestion & Energy Uptake (3rd article is out)

Oh hey- I’ve been so busy with my dissertation defense, I didn’t even notice my third encyclopedia chapter coming out- Cooking: Increased Energy/Reduced Digestion ūüėÄ If you can’t open the full text on the website, the¬†PDF file is also¬†HERE.

Short intro: Cooking food is a unique human activity spanning across all cultures, and humans appear to be evolutionarily adapted to this crucial aspect of their diet (Wrangham and Conklin-Brittain 2003). The value of cooking lies in its ability to widen the range of foods that are safe to eat (whether by making their digestion easier or neutralizing toxic compounds) as well as extract more energy from the foods ingested. Both human and animal studies illustrate that the more cooked food there is in a diet, the greater the net energy gain for the eater (Carmody and Wrangham 2009), and a diet of raw foods is energetically inadequate even when various nonthermal processing methods are employed (Koebnick et al. 1999). The effect of cooking on the energy gain from eating includes several mechanisms: increasing digestibility and thus caloric value of ingested foods, lowering the body’s energetic costs of digesting, and mounting an immune defense against food pathogens.

screen-shot-2017-02-09-at-11-39-06-am

First encyclopedia chapter published!

Woohoo!

My first encyclopedia chapter is finally published!

I was researching and writing this one¬†while traveling across 3 countries this summer and collecting data, so the whole process was not necessarily a piece of cake. Thus, i’m extra pumped¬†this is finally¬†available! If you want to read the chapter but can’t access it, feel free to email me and i’ll send you the PDF ūüôā -> mvoytyuk (at) asu.edu

screen-shot-2016-11-13-at-10-16-47-am

NOTE: It’s actually highly ironic for me to write on how cooking could have been instrumental in the evolution of our large brains-¬†I spent 2 years as a highly motivated raw vegan! Indeed, I took several “raw cooking” and educational courses in different parts of the U.S. (Illinois, California), was a private raw “chef”, and taught raw veganism workshops for over a year at a food co-op I managed.

This chapter doesn’t actually¬†comment on whether there could be health benefits to eating a diet higher in uncooked foods. It does focus on highlighting the fact that we appear to be particularly adapted to cooking. So, I’d say it does¬†not support a 100% raw vegan diet as a worthy endeavor.

Click HERE for the encyclopedia page, and here is the short intro:

The disproportionately big human brain is a conundrum ‚Äď it is larger than would be expected for a primate of our size, and it is a very energetically expensive organ. Since human basal metabolic rate (BMR) is not elevated to match such a big brain, the extra energy needed to sustain it suggests a dietary explanation. Feeding the large brain would likely require a shift to a high-quality diet: one comprised of energy-rich, easily digestible foods. This hypothesis is supported by a number of anatomical features: smaller teeth, jaws, stomachs, and a shorter large intestine. Two key elements of human subsistence ‚Äď cooking and meat eating ‚Äď have been proposed as a possible means of achieving this high-quality diet.

Are we all just food-selecting zombies?

It was a Saturday afternoon- I spent all morning writing one of my dissertation articles. It was unfortunate that i had to be on campus instead of enjoying my morning coffee at home, but some syncing error got me panicking as I¬†couldn’t find my latest saved draft.. So here I was with only 25 minutes¬†before¬†my aerial fitness class: I made a quick stop at an empty campus store, grabbed something to eat and rushed out to my car, still deeply pensive over some changes I should make- I am writing about lay interpretations of healthy eating context.

I looked down to see what it is I was holding in my hand, because it seemed like i made my snack choice in some auto-pilot mode: fullsizerender-20

OK, it made sense. Considering the context. And then I thought- I just spent 4 hours writing up my article on healthful eating beliefs.. how would I go about finding out what rationale was behind my food selection right now?

I pretended to ask myself in an interview format- “why did you choose these items?”- and immediately imagined a word cloud of my transcribed answer: there was a whole bunch of stuff there, but several most salient words stood out: calories, protein, satiety, light. The transcribed text would read:

…so I was not starving yet, but it was almost 1pm and I had an intensive aerial class that I anticipated i’d want energy for… i needed to feel full but not physically full (so, light)- can’t eat anything big before hanging upside down on the aerial hoop! I know protein is satiating, and I like this bar because it’s damn delicious (i’m aware of the halo effect that “protein” has in this situation – extrapolating the “goodness” of protein to unrelated product characteristics, such as it’s overall healthiness… it’s really just a candy bar! but the health claims on the package do pacify the guilt splendidly). I also know that sweetness may provoke hunger on it’s own, so I have to balance the taste with the umami-ness of string cheese. This combo is also just about 300 calories, which is my upper limit for a snack (I gage it, though I know i’m exactly on point with the number despite not checking the nutrition label)… I don’t really count calories- I think it’s not a helpful behavior and one can become fixated on it, which might get detrimental for your dietary quality. Yet I also can’t help being somewhat vigilant- I know eating gets more “fun” later in the day, so I want to leave enough of an energetic allowance to indulge in my evening netflix/playstation time. Calories definitely matter- i’m so tired of people’s hopeful attempts to fight this truth and discover¬†a loophole in the first law of thermodynamics. Sure, there are nuances- cooking and processing can change the availability of calories to your body, but those are just nuances to me- at least that’s my current stance based on the literature.

Wow, that’s a whole lot of rationale for an “auto-pilot” choice that took 20 seconds without conscious effort. Of course, eating perceptions and choices are my research topic, so I am quick to self-reflect in detail. Yet for many respondents, who hold¬†their own complex mental models of healthy eating, this can¬†be like pulling teeth- it’s not easy to explain things that seem obvious or natural to us¬†(unless maybe you’re writing a dissertation on it). My reasons are good¬†examples of¬†cognitive heuristics- “rules of thumb” used to make choices in complex situations, such as eating (we make about 200 eating decisions daily, according to Dr. Wansink- too lazy to give you the specific study name.. just google it ūüôā ) The “Protein- satiety- good” connection is a simple heuristic, the “power” and “energy” words on the bar signaled appropriateness of this snack before a workout, the familiarity of the products (I know this bar and it’s taste; bought it before) also played a role.

But anyway:¬†I’m almost done writing my first chapter now. I’m in the process of shortening it actually……… by about 10,000 words :S It’s such a painful process to let go of your findings- perhaps I’ll post a bunch of interesting results here in the coming months! I could be sporadically posting cool quotes on twitter or Instagram too, but honestly- that’d get attention of maybe 10 people. Meanwhile my latest quick sketch of a friend pulling off an aerial trick just got more than 1000 likes… So forcing myself to tweet the dissertation is lacking in motivation at the moment.¬†In the meantime- enjoy whatever it is you might be eating right now!¬†Don’t overanalyze it, I suppose?

UPDATE:

I stopped by the campus store on this fine “dissertating” morning, and got the protein bar again + another item to illustrate my previous point. This probably won’t shock anyone, but i’d say i was quite correct in stating 2 days earlier “it’s really just a candy bar!”

img_4553
The protein bar’s serving size says “1 COOKIE”. Cookie! Kit Kat has the decency to refer to itself as 1 package ūüėÄ Surely, both are just candies.

At least if you consider the energy content and, really, majority of ingredients (i will admit- “monk fruit” sounds mysteriously awesome, though it is the last ingredient (so there’s like a trace amount of it).

Now, obviously there’s a difference- and that’s the difference that drives the high price point of the protein bar (as well as it’s healthiness message): the power bar has more protein (13 g vs. 3) and less sugars (5g vs 21g). On another hand, the power bar has a bit more saturated fat and cholesterol. That last point is most likely less relevant to an average reader- so far, my interviews and surveys show people vilify sugar much more than fat (again, you’re probably not shocked and i’m definitely not the first one to notice- the low fat fad is over, it’s been all about the horror of carbs for awhile).

Now, protein appears to be¬†more satiating than sugar, according to a bunch of studies (go check out Google Scholar), so perhaps you indeed might eat more later after the Kit Kat, despite eating the same amount of calories as from the Power Bar. And something like that can¬†be tested in a nicely designed experimental study (probably has been). Despite all of this,¬†next time i make a quick stop at the store, i’ll probably still reach for the ¬†Power Crunch bar. Buying a Kit Kat is too bizarre- I ¬†don’t eat candy! And though i know the bar is really just another candy- well, ¬†it just leads to less cognitive dissonance ūüėõ

 

 

Red meat, human vulnerability, and.. mammal pets?

12993520_545709718944195_6669954929821747069_nExciting day! Another diet-related talk at ASU’s Center for Evolution & Medicine. This was a nice break from the horror that is the last 2 weeks of the semester..

It’s taking me awhile to “digest” all the information (hehe), but I found the seminar fascinating and wanted to summarize some main points. Lots of open questions remain, but John Pepper of National Cancer Institute really shows how examination of any health problem needs to focus not only on proximate causes, but the ultimate or evolutionary causes.

So.. Pepper asks- why is mammal meat bad for humans, specifically?

FullSizeRender 19
Meet Dr. Pepper!
In humans, red meat (he refers to it just as mammal meat) is linked to inflammatory diseases (cardiovascular, alzheimer’s, arthritis). What’s the mechanism behind this?
The inflammation from mammal meat has to do with our antibodies attacking something coming from other species.. When we eat mammal meat, we in fact incorporate something non-human from the diet- sialic acid.
FullSizeRender 17
Both human and other mammals have sialic acid in their tissues, actually, but humans have a unique mutation that replaces the form found in other mammals (ancestral form- Neu5Gc) with a different one- uniquely human (Neu5Ac).
So.. if we eat meat we get the new aquired ancestral sialic acid, it becomes part of our cells, and the small structural differences in the two get recognized by the immune system.. which responds with a defense- inflammation!
Chimpanzees are humans’ closest evolutionary relatives,¬†sharing a common ancestor¬†6‚Äď7 million years ago..
WHY does human sialic acid differ uniquely? The “Malaria hypothesis” (see Martin&Rayner, 2005)¬†proposes that¬†in Africa, early humans escaped from the ancestral pathogen they shared with chimpanzees. They managed to do so by¬†replacing the pathogen’s binding target (ancestral sialic acid Neu5Gc) with novel Neu5Ac. With time, a population of that old¬†evaded pathogen evolved to infect humans again by recognizing the new Neu5Ac..leading to the origin of malaria.
Screen Shot 2016-04-21 at 2.03.08 PM.png
The longer an animal has been domesticated, the more humans share parasites and diseases with them

If the Malaria Hypothesis explains why the initial change in humans happened.. why has it remained¬†the same to this day? I mean, it’s been some several million years now- has this mutation been advantageous this whole time? It’s an important question because this sialic acid mutation poses a COST on our health: this trait causes chronic inflammation in people who eat mammal-derived foods + it also now causes vulnerability to malaria.

The hypothesis for why the human sialic acid modification is still around is that it
provides benefits- specifically, protection from parasites and pathogens via increased inflammation. This is relevant because of what humans have been doing for the last ~15,000 years. Animal domestication!
Humans are more vulnerable to shared pathogens from other mammals (than from non-mammals). So being around cattle, for example, carries a risk of catching¬†pathogens from which that cattle suffers. Such animal pathogens impose a strong selective pressures on humans..¬†Pepper suggests that the uniquely human sialic acid (Neu5Ac) allows our diet to adapt us to the issue of animal pathogens by adjusting our inflammatory tone (how much inflammation we are experiencing): “those human populations that are exposed to domesticated food-mammals and their pathogens are also eating mammal-derived foods that are pro-inflammatory (both meat and dairy).”
Inflammation is a great example of a trade-off. It both has benefits (protection from parasites & infections) and costs (chronic disease, metabolic expense of mounting an immune response). The optimal balance for this trade-off would depend on how strong of a pathogen pressure you’re experiencing.
This increases¬†inflammatory PROTECTION only where it’s most needed (like around animals). So this auto-immune inflammation from mammal foods in the diet not only increases likelihood of chronic disease, but protects against shared mammalian pathogens.
….. ¬† ¬†…… ¬† ¬†……
It got me¬†thinking about human culture and our ability to modify our environment in all sorts of ways- an¬†example of “maladaptation” to modern times! Living in cities, not exposed to higher pathogen load from being around domesticated animals..yet having access to all the mammal meat we can buy = all put you in a situation where the good old sialic acid mutation might do¬†more harm than good. Should people go vegan? Should they simply cut down on red meat? There was no discussion on the effect size of mammal meat eating and chronic disease, so I wouldn’t necessarily jump onto any¬†lifestyle changes based on this talk. Yet the process of understanding this health concern through the lens of evolutionary medicine is quite fascinating!
¬†P.S. I’m not an expert on this topic. If you have something to correct or add, please comment ūüôā
FullSizeRender 18
Very cool use of evolutionary medicine principles in this case & a glimpse into why it’s important to use them if we want to understand disease.

 

Eat Less- Live Long? Not so FAST..

Got it- to FAST? ūüėÄ
The past week has been a treat in terms of great talks on campus. At ASU we are super-lucky to have the Center for Evolution & Medicine, which holds weekly talks by amazing speakers.

First
February 18- Arizona State University

When I saw that the upcoming seminar was related to diet and eating..or more specifically¬†NOT¬†eating or “dietary restriction”, I of course RSVPd in a heartbeat.

“Eat breakfast yourself, share dinner with a friend, give the supper to your enemy”- Russian Proverb

I’ve been in fact fascinated with¬†caloric restriction for¬†years now Screen Shot 2016-02-20 at 1.30.46 PM.png(I wrote a whole¬†research paper on it in the first year of my master’s degree). You might have heard of intermittent fasting (e.g. popular in the CrossFit world), or the CR¬†Society (¬†http://www.crsociety.org/ )- all are related to¬†the concept that restricting food intake results in health benefits (from extending life to preventing and reversing disease).

I’m sure you can Google caloric restriction and find a bunch of information on its reported benefits..you would see this chart at the CR society website- the lifespan of calorie-restricted (CR) mice vs non-CR mice. You can see that those whose food intake was restricted by more & more % lived longer.¬†Screen Shot 2016-02-20 at 1.24.28 PM.pngWhy do many animals (and perhaps¬†humans) appear to be so well-adapted to eating less? The traditional interpretation of this CR phenomenon is that¬†the¬†dietary restriction effect “has¬†evolved as a way to enhance survival & preserve reproduction during periods of naturally occurring food shortage”. In other words- being adapted to do well on restricted food intake during rough times would have helped our ancestors survive them & stay healthy to have kids later when the food situation improves.

The traditional interpretation of this CR phenomenon is that¬†the¬†dietary restriction effect “has¬†evolved as a way to enhance survival & preserve reproduction during periods of naturally occurring food shortage”.

Experimental evidence with animals, however…supports a different hypothesis- the one Dr. Austad (Professor & Chair of the Department of Biology at the University of Alabama)¬†presented to us last week.¬†Again, I wouldn’t be able to cover everything he discussed during the seminar, but I do want to highlight a couple of main points!

I. First, even though the first book on dietary restriction (DR) HowWorks.jpgdates back to the late 16th century, we still do not know the mechanism behind why DR seems to extend life and vigor in animals + delay disease such as cancers. METABOLISM was the original suspect, as metabolic rate goes down with fasting.. however, metabolic rate drops initially yet gradually goes back UP (takes 6-8 weeks to happen).. Since DR changes an unbelievable amount of physiological parameters (see screenshot ->) it is very hard to determine its mechanism.

II. Second, while many sources cite mice experiments showing life extension with caloric restriction.. those experiments are done with lab mice. When DR studies are done with wild mice, DR has no effect on longevity. WHAAAT!! I’ve never heard this before- in fact i was under the impression that CR/DR extends life in animals, period. Well, NO STUDY has ever found that DR extends life or improves health in nature (or even “nature-like” conditions). Mice in the wild actually do not have enough fat stores to reduce feeding except very briefly (wild mice has about 4% fat while a regular lab mice has 15%; also lab mice do not reproduce). In fact, mice in nature simply do not live long enough for the survival benefits of DR to be important. Another challenge to the original hypothesis that adaptation to dietary restriction¬†enhances survival, is that DR increases¬†mortality from some infections. Lastly, DR increases cold sensitivity (and cold is a major source of death in wild mice) and slows down wound healing.

Sounds like animals in the wild would not benefit from adaptation to dietary restriction… yet¬†why¬†is the positive DR effect observed in so many studies so common?

III. Well, even though wild mice do not live longer with restricted diets, DR still results in cancer protection for them. But even more importantly, DR has been found to protect against acute effects of many many toxins! Dr. Austad talks about this discovery in the following way:

¬†..¬†if animals can not afford to wait to reproduce..and they have to do it even when food conditions are poor, what they will do is broaden their diet. This means they might be ingesting a lot of toxins they are not normally exposed to (foods infected with fungi, new seed types that are well defended by the chemicals they wouldn’t normally encounter). So the hypothesis is that DR acutely induces broad defense mechanisms from a broad range of toxins

Toxicology studies have shown that mice that are calorically restricted survive a wide range of toxins. DR also acts as an acute (vs. chronic) protectant against other problems (see slide below). Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury and we can see that while ad libitum mice are dying steeply by day 7, those on DR of various proportions survive (30% DR is only 70% of normal food intake; ad libitum stands for eating as much as one wants). This is quite impressive!!!

Screen Shot 2016-02-20 at 2.36.43 PM.png

These acute benefits of DR have very important implications. We can think about these effects actually protecting the body against the toxins it itself produces (like free radicals).. it also has clinically relevant advantages- e.g. patients on very strong drug cocktails fasting to avoid harsh side-effects. This suggests that the protective effects of DR could have clinical relevance unrelated to chronic benefits like life extension.

The new hypothesis explaining the evolutionary advantage of this paradoxical effect is that dietary restriction arose as a defense against novel exposure to toxins during food shortage.

So in conclusion.. we saw evidence suggesting that dietary restriction would NOT enhance survival in nature. Yet research has shown that DR increases health and life in a diversity of species. The new hypothesis explaining the evolutionary advantage of this paradoxical effect is that dietary restriction arose as a defense against novel exposure to toxins during food shortage.

Screen Shot 2016-02-20 at 2.54.15 PM.png

My conclusion? I’m still excited about this topic- more than ever before!!!¬†There is a lot of work done now on the timing of food intake as well (not just restricting the amount, but restricting the timing of eating and human health) and I can’t wait to post more about this (after I collect some necessary data though :). ¬†Watch out for early May as I’ll be sharing some more info!

Meat, Plants, and Humans..

This week on ASU campus I managed to attend a fascinating talk: Reconsidering the Role of Plant Foods in Hominin Diets by Dr. Chelsea Leonard. Screen Shot 2016-02-17 at 11.41.44 AM

It was a job talk for the Evolutionary Anthropology department here at ASU and Dr. Leonard is an evolutionary ecologist interested in “human foraging decisions & diet reconstruction”(so- her work would help to clarify¬†what humans ate in the past!)¬†working with Twe populations in Namibia (southwest Africa).

Why does Dr. Leonard study the role of plants? Since shifting towards more meat in diets of early humans has been¬†suggested to be crucial for the unique adaptations in our genus (e.g. large brains), animal foods¬†appear¬†to be very Screen Shot 2016-02-17 at 12.00.04 PMimportant. There is indeed a strong case for meat in a human diet- in comparison to chimpanzees who are mostly herbivorous (eat plants), the human gut has opposite proportions- our small intestine is much longer, while the colon is a lot shorter. The colon is where fiber fermentation occurs- something crucial if you are eating lots of plant foods (and wild plant foods are very high fiber!). What Dr. Leonard suggests, though, is that meat’s importance in human diets may be quite¬†overstated¬†(especially in meat-heavy “paleo” diets popular now).

The people she studies- Twe- are “forager-horticulturalists”; while the Namibian government has been providing maize for them (this started very recently, in the last 7 yrs or so), they mostly forage for wild foods and have very low intake of animal products. Apparently, historically this population hunted large game and had a higher meat intake.. but the area is very poor in large animals now (and has been this way for ~200 yrs).

While I wont’ be able to describe everything Dr. Leonard discussed, I found the following fascinating.. Based on her observations and interviews with the Twe, she constructed and analyzed a hypothetical (yet realistic) diet for this region.¬†Since Twe seem to be doing just fine health-wise with an extremely low animal food intake (there might be some birds, insects, rodents eaten from time to time), she wanted to test if their meatless diet truly meet basic nutritional requirements. FullSizeRender 9

Based on the plants the Twe regularly eat, her analysis showed that such meatless diet can realistically provide enough protein (it can reach minimum levels of essential amino acids our body can not produce without foods that contain them), it can also provide enough fat (while most plant sources were extremely low in fat, the grass seeds often eaten are rather high in it). The main issue with this meatless diet was calories. Getting enough calories to survive would be improbable : while the hypothetical food intake reaches 1774 calories a day.. only 772 of them are metabolized. What this means is that a lot of these calories are not available to the human body- since humans can not ferment fibers very efficiently, a lot of this rough wild plant fiber is indigestible and does not provide our body with energy.

The main issue with this meatless diet was calories.

Since foraging for wild plants ¬†is very labor intensive¬†(and this does not really mean standing around picking berries, but e.g. digging up roots that are about 1 meter (~40 inches) into the ground, or grinding grass seeds and cooking them into porridge), there isn’t enough time in a day to get enough digestible calories from foraging. So animal products are more efficient and provide a concentrated mix of not only essential nutrients, but fat, protein, and calories. While the speaker couldn’t quite estimate the % of calories coming from small game (the birds, insects, etc.), it was very small but still was a part of this population’s diet¬†[note:¬†any time honey was available, it was eaten in large amounts and rather adored, apparently!]. Thus,¬†while a ¬†vegetarian diet can be maintained¬†in our modern world with plentiful food supply (and supplementation), it was not possible for non-industrialized populations.

humans are highly adaptable as we span huge geographical areas, and thus no single “diet” “made us human”

We know humans are highly adaptable as we span huge geographical areas, and thus no single “diet” “made us human” (thus, there is no one Paleo Diet). Yet plants are extremely important in our history- we see that they can sustain populations in good health to a very large degree. One issue with studying the role of plants in human diets is that they do not last well archeologically (e.g. it’s much easier to find evidence of large game being consumed, because their remains last well).

while a  vegetarian diet can be maintained in our modern world with plentiful food supply (and supplementation), it was not possible for non-industrialized populations.

Overall, this was a really great talk! It also reminded me of a paper I read on the significance of plant foods in human evolution, which I talked about HERE.

[note: if you are an evolutionary anthropologist sand have any edits/clarifications to my post, please comment! I am not an evolutionary anthropologist :)]

No need for RAW (food) stress ;)

Most of my present acquaintances are unaware¬†that I used to be a huge proponent of raw foodism. “Huge” meaning¬†I spent hundreds (thousands, actually) of $$¬†traveling to get certified as a chef and an educator (centers¬†in Chicago, Atlanta, and northern California), taught “cooking” classes at the local co-op, was a private chef for months,¬†etc.

In fact, check out some of the raw vegan dishes I used to make!

Screen Shot 2015-01-30 at 8.54.29 AM

Is this amazing or what? I’m still quite proud of my raw culinary past. The recipes used soaked nuts, dried fruits, sprouted items (like buckwheat) and of course lots of vegetables and fruits. While fun & unique, it was also very time-consuming, rather expensive, and not necessarily healthier. It did fit well with people who have allergies (since raw recipes don’t use soy, wheat, peanuts or many other problematic foods).

Screen Shot 2015-01-30 at 8.52.05 AM


I almost spend all day writing down why exactly I have concluded¬†raw veganism is unnecessary and based on false beliefs… But that would be a true waste of time (and rather dull¬†to me) so I’d rather redirect you to already well-written articles!

False belief 1: We are meant to be plant-based because our physiology shows we’re herbivores!¬†

  • NO. (my previous blog post). And it’s a good reminder not to attempt to compare our diet to that of other animals and insects¬†(insects! people make the point that insects and animals don’t cook food! insects & animals also can’t perform surgery or produce toilet paper)
  • Another thing worth mentioning is the incorrect¬†assumption that vegetarian/vegan folks are healthier than others because they avoid meat. Majority of big studies I went through in my nutritional epidemiology class compared meat-avoiders with people on a standard american diet…and didn’t do a good job controlling for the fact that they compared health-conscious vegetarians with generally regular unhealthy folks. Luckily i don’t have to write more, because THIS ARTICLE¬†did it for me AND gave citations (woohoo!). Pay attention¬†that health benefits of meat-eaters is more correctly attributed to other healthy behaviors (avoiding refined sugar and grains, oils and trans fats, avoiding smoking and so on).

False belief 2: Cooking is unnatural.

  • First of all, let me point out that some types of cooking of some foods produce potentially carcinogenic compounds. HERE is my post on acrylamides. Like with other valuable claims from raw foodists- this is not supposed to mean you should never eat baked potatoes. It means having antioxidants in your diet from other plants is very important. The new genetically modified potato, by the way is designed to decrease acrylamide content. Unfortunately, generalized¬†anti-GMO sentiments might win over that benefit.¬†
  • How Cooking Made Us Human¬†Read this wonderful New York times article on the Catching Fire book and how cooking was instrumental in our evolution! I remember I was aghast when i heard of this book- you mean turning food into murderous evil toxic stuff that kills cute kittens made us human?? I’m clearly joking here, but not actually over-exaggerating too much. Many of us in the raw community would absolutely avoid the healthiest of soups, since cooked was equivalent to “toxic” and “addictive” in our heads.
  • Humans are adapted to controlling fire & using it to cook. ¬†See part of the ¬†“Human adaptation to the control of fire” paper here (click on pics to enlarge). For full paper, here is the citation but it might not be free unless you have university affiliation-¬†Wrangham, R., & Carmody, R. (2010). Human adaptation to the control of fire.Evolutionary Anthropology: Issues, News, and Reviews, 19(5), 187-199. TRY HERE.

 cook1

cook2

 

  • Here is a fun piece of “fake information” online. I have to address this…Screen Shot 2015-01-30 at 6.36.44 PM

    Author states:
    “Fire was only discovered a relatively short time ago”

  • No- fire was controlled prior to emergence of homo sapiens. In fact, the earliest convincing evidence of fire use for cooking appears the 780,000-400,000 years ago.
  • Animals show that anatomy can adapt very quickly to a change in diet. With human populations that have a history of dairying (like northern Europe), ability to digest lactose into adulthood has evolved at least twice in the last 7000 years. For people with a recent history of eating starch-rich foods, they exhibit higher copy numbers of the gene encoding for a certain enzyme.

    Author states:
    “Out of the millions of species of animals and insects on the Earth, only people intentionally eat cooked food”
  • *cricket sounds*……….. What is this supposed to argue? There is no way to discredit a completely illogical statement.

    Real point here: humans are adapted to cooked diets. Reductions in masticatory and gastrointestinal anatomy show that. See Wrangham article cited earlier. 

 


 

3. False belief 3: We need to eat an all-alkaline diet (or high raw plant diet)Alkaline

First of all, just to clarify: your body can’t actually get “acidic” ¬†(see photo & citation*) though dietary acidosis is a thing. Acidosis is a proces s or trend toward acidaemia (¬†blood pH of less than 7.35) but without necessarily reaching a pH of less than 7¬∑35″.¬†**¬† Increasing fruit and vegetable intake, reducing processed junk and not making your diet heavy on meat is a great recommendation to avoid the trend towards acidaemia, though it’s unclear it actually benefits¬†bone and kidney health:

“Both dietary interventions (lowering protein and increasing fruit and vegetable consumption) and nutritional supplementation (with K and Mg salts) have been shown to normalise acidosis, but with discordant results on whether this is then associated with clinical improvement in bone, muscle or other physiological or pathophysiological conditions. A positive NEAP [net acid load] diet results in increased urine Ca, N and bone marker excretion, and predisposes to kidney stones. Whether or not, over the longer term, this translates to lower bone density, increased bone and muscle loss with ageing is unclear and requires further investigation.”**

This does not necessitate eating a raw vegan diet though– it necessitates being reasonable and, like recommended by parents, governments, and nutritionists, make sure to eat your fruits & vegetables and minimize high-caloric processed foods. This also¬†doesn’t mean eliminating animal foods at all. Here is a great article*** that estimates the “acid load” of diets of hunter-gatherers (HG) and modern diets. They find the HG diets were neutral (e.g. not “too acidic”, if you prefer) and contribute elevated diet acidity of modern diets to processed cereal grains. Great idea to minimize on processed products anyway!

aciddd

 *Deng, G., & Cassileth, B. (2013). Complementary or alternative medicine in cancer care [mdash] myths and realities. Nature Reviews Clinical Oncology,10(11), 656-664.

** Pizzorno, J., Frassetto, L. A., & Katzinger, J. (2010). Diet-induced acidosis: is it real and clinically relevant?. British journal of nutrition, 103(08), 1185-1194.

*** Sebastian, A., Frassetto, L. A., Sellmeyer, D. E., Merriam, R. L., & Morris, R. C. (2002). Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. The American journal of clinical nutrition, 76(6), 1308-1316.


 

4. False belief 4: Raw Food is superior because it has all the enzymes intact

  • There’s no scientific support for this, and that’s about it. **** In fact, this was my turning point in adhering to this lifestyle: I realized this very foundational claim has no basis.
    The evidence raw proponents cite is a 1985 book called Enzyme Nutrition. That’s 30 years ago… good science is self-replicating so I would expect there to be more studies on such a potentially fascinating subject if there is something to it.. I don’t see any.

enz

**** Hobbs, S. H. (2005). Attitudes, practices, and beliefs of individuals consuming a raw foods diet. Explore: The Journal of Science and Healing, 1(4), 272-277.

CONCLUSION!

None of this is supposed to go against the fact that eating a lot of fresh fruits and vegetables is very important and very healthy! HERE is a nice Scientific American article giving examples when some vegetables are better and worse when cooked.

But this is supposed to discourage you from forming a belief system that humans aren’t “supposed” to eat cooked and animal-based food***** or that there is a need to stick to eating raw plants only. It is also supposed to prevent¬†damaging thinking- e.g. a hot chicken soup is toxic; cooked food is addictive; non-organic food is dangerous.¬†Humans have a tendency towards¬†monotonic thinking- it’s hard for us to be OK with the fact that something we consider “bad” is only bad at high doses and is actually ¬†essential and beneficial at lower doses (e.g. fat, salt in the diet for some people).¬†Considering this lifestyle takes a lot of time and effort, does not necessarily results in weight-loss (and when it does- it’s just because you eat less calories, not because raw food is magical.. if you go heavy on the nuts & oils you will gain wait), and there is absolutely no reason to consider this eating natural or superior¬†I believe this dietary approach¬†is unnecessary and attempting to stick to a highly raw food diet results in a lot of stress for no reason.

 


 


EXTRAS

Note:I ¬†am intrigued by the possibility that this approach might have therapeutic benefits. It’s not based on any present¬†science, folks, but I would be excited to see studies of this eating plan as a medicinal diet for improvement of certain conditions!!

You are welcome to comment on the blog and ask questions or challenge some of the statements! I’m not anti-raw as much as I am pro-science and evidence. I’d love to research very specific topics so please comment with a specific concern ūüôā
***** As a good friend of mine noted- it’s important to remember that vegetarianism/veganism is not only a choice to be healthy..but it’s also a choice due to environmental and ethical concerns. I’m unqualified to cover those in detail, but it is obviously an important reason some people avoid animal products and I’m not arguing against it!
p.s. Links to all sorts of websites debunking some raw food ideas or talking about its shortcomings, etc. Just stuff that came up after 2 minutes of Googling ūüėČ
http://www.veganhealth.org/articles/cooking
http://www.takepart.com/article/2013/05/08/jane-says-raw-foodism-raw-deal
http://www.mindbodygreen.com/0-13454/3-reasons-no-one-should-be-on-a-raw-foods-diet.html
http://www.hellawella.com/top-10-annoyingly-stubborn-nutrition-myths-debunked/9645
http://www.fredericpatenaude.com/blog/?p=2036
http://www.sciencebasedmedicine.org/simply-raw-making-overcooked-claims-about-raw-food-diets/
http://news.sciencemag.org/evolution/2012/10/raw-food-not-enough-feed-big-brains
http://www.huffingtonpost.com/david-katz-md/raw-food-diet_b_2015598.html
http://renegadehealth.com/blog/deathofraw
http://www.beyondveg.com/tu-j-l/raw-cooked/raw-cooked-1b.shtml

Meeting Mr. Paleo!

Is there anything more exciting than a health conference???

Well, there is always chocolate, but the conference excitement is quite comparable.

ImageArizona State University has organized a great conference “Nutrition for Optimal Health and Performance”.¬† Today’s lecture included speakers on athletic nutrition, debate on the High-Fructose Corn Syrup, and Paleolithic Nutrition.¬† Right now I shall focus on the Paleo presentation.

S. Boyd Eaton, MD from Emory University is considered the “father” of the modern paleo movement (you would know him from the Paleolithic Prescription book). He himself considers himself the “grandfather” since much of his original ideas have been somewhat transformed by other (younger) researchers (and he does not necessarily agree with all).

The Hypothesis

The presentation was not new to me, since I have read several of his papers.¬† In short, Dr. Eaton talked about the basis for the paleo health idea- the “discordance hypothesis“, according to which our genes and our lives are discordant (we adapted to a certain food and activity pattern, which is not matched by the modern sedentary/processed foods lifestyle)… The mismatch of the current obesogenic environment and our stone age genes are the reason we suffer from “western” diseases.¬† The human of 40,000 to 15,000 years ago is fundamentally identical to the modern human.Screen Shot 2013-02-08 at 8.35.37 PM

Then Dr. E talked about different % of meat subsistence of recent hunter gatherers which ranges from 20% animal products to 95%.  They/anthropologists take the 50% of animal protein in the diet  as the model due to the idea that most of us come from the savanna region of Africa (with 50% animal dietary intake).

He also discussed that anthropologists have rather good ways of studying old diets (human skeletal remains, archeological finds, recent hunter-gatherers, and proximate nutrient analyses).

The “Ancestral” Diet

The Paleo-Nutrition of East Africa (~50,000 years ago) is considered to be comprised of 35%, 25-35% protein, and ~35% carbohydrates. Of course the carbs, protein, and fat of long ago and the present day are not the same (obviously, less processed and more micronutrient rich; the fat was more polyunsaturated, more long chain PUFA, and less cholesterol-raising fat).¬† Other noted differences – vitamins and minerals were 2-8 times higher than average American intake; much higher potassioum-to-sodium ratio, the diet was more basic than modern acidic diets, and much more antioxidants than at present (generally 4x). Dr. E especially emphasized fiber- vegetables in the wild are much more fibrous.¬† Lastly, the energy intake was considerably higher, but caloric density was low (there was more bulk- more fiber, more water in food). Dr. E also talked about “free water intake”- most of the fluids consumed were part of the vegetables&fruits.

That’s all great, but here is something that was new to me. Dr. E himself differentiated between the “weak” and “strong” forms of the paleo prescription. It’s hard to say what all forms of “paleo” people out there are following, but my impression is that folks try to stay pretty strict with what they believe our “ancestors” ate. For a healthy normal individual, however, Dr. E’s weak form consisted of-

Image

The strong form (which seems to be the popular form as I can tell from talking to folks) is for people with “resistant health problems or who are unable to maintain desirable biomarkers” + competitive athletes.¬† This diet is what you would usually recognize as “the paleo diet”completely excludes grains, dairy, and alcohol.

The AfterLecture

The most exciting part for me was listening to Dr. E talk to a group of people after the presentation. A dietitian asked about the lack of legumes and beans in the paleo diet (she was upset about such nutrition advise). He commented that this was not something he necessarily agreed with at all, and that this idea originated with a different researcher (sorry, I can not remember who).  My friend asked how he viewed a paleolithic diet without meat (she is mostly vegetarian).  He said his understanding of meat avoidance is very much justified on ethical and moral grounds, considering the treatment of animals and their health (thus, the healthiness of their meat).  And if one could get their protein adequately from other sources that was great too. So he was not particularly married to one type of the ultimate human diet. Overall, Dr. E was a pleasure to be around.

My Comments on Meat Avoidance

Another dietetics student, who I know is a vegan since we are both involved in a vegetarian study, asked how he would respond to the massive literature on the health benefits of vegetarian diets and the problem of saturated fat from meat. Dr. E “politely disagreed” that vegetarianism was necessary for health but did not elaborate as much as we hoped. I understand the doc does not view being vegetarian as necessarily more healthy (considering you could do paleo with grass-fed free range meat and all). But I also wish he could talk about this further.Screen Shot 2013-02-08 at 8.29.54 PM

As someone who was vegan for 2 years and is very familiar with various health rationales for avoiding animal products, I have come to the conclusion that it is not necessary to exclude these products from the diet for health. Many cite The China Study by T. Colin Campbell, which is a book I also used to refer to (in brief, it shows the connection between animal protein and cancer). However, after looking into people who eat “traditional” diets (e.g. the Weston A. Price foundation diet), and seeing the vibrant health they enjoy… I had to come to the conclusion that all is not as black & white as I expected. In regards to meat & cancer, I am fascinated by new information on mTOR. Since I plan to post about mTOR in depth later, I will only say that it is a pathway that can be up-regulated if excess protein levels are detected in the body…in turn this stimulates cellular proliferation and adverse mitochondrial effects. In short- too much protein= increased risk of cancer. But note here that animal protein only in excess leads to adverse health effects, not animal protein per se. Supposedly, 45-60 g of protein per day for the majority of adults is a good amount* for longevity and avoidance of disease.

It was a pleasure to actually talk to the originator of the “paleo” movement, who himself is very balanced and rational in contrast to how the idea can be taken to extremes by many different people. The one thing Dr. E said is that obviously it is not sustainable for everyone to eat a paleo style diet any more, unless we decreased the world’s population drastically. Obviously, that is a different talk altogether.

*Gedgaudas CNS, CNT, Nora T. (2011-05-27). Primal Body, Primal Mind: Beyond the Paleo Diet for Total Health and a Longer Life (p. 196). Inner Traditions Bear & Company. Kindle Edition.